Sponsor Area

Wave Optics

Question
CBSEENPH12038991

Using Bohr’s postulates, derive the expression for the frequency of radiation emitted when electron in hydrogen atom undergoes transition from higher energy state (quantum number ni ) to the lower state, (nf ).

When electron in hydrogen atom jumps from energy state ni =4 to nf =3, 2, 1, identify the spectral series to which the emission lines belong.

Solution

According to Bohr’s postulates, in a hydrogen atom, a single electron revolves around a nucleus of charge +e. For an electron moving with a uniform speed in a circular orbit on a given radius, the centripetal force is provided by the Coulomb force of attraction between the electron and the nucleus.

Therefore, 
fraction numerator m v squared over denominator r end fraction space equals space fraction numerator 1 space left parenthesis Z e right parenthesis space left parenthesis e right parenthesis over denominator 4 pi epsilon subscript o r squared end fraction                                       ... (1) 
rightwards double arrow m v squared space equals fraction numerator 1 space over denominator 4 pi epsilon subscript o end fraction fraction numerator Z e squared over denominator r end fraction
So, Kinetic Energy, K.E = 1 half m v squared
K. E equals fraction numerator 1 over denominator 4 pi epsilon subscript o end fraction fraction numerator Z e squared over denominator r end fraction
Potential energy is given by, P.E = fraction numerator 1 over denominator 4 pi epsilon subscript o end fraction fraction numerator left parenthesis Z e right parenthesis space left parenthesis negative e right parenthesis over denominator r end fraction space equals space minus fraction numerator 1 space over denominator 4 pi epsilon subscript o end fraction fraction numerator Z e squared over denominator r end fraction
Therefore, total energy is given by, E = K.E + P.E = Error converting from MathML to accessible text.
E =  negative fraction numerator 1 space over denominator 4 pi epsilon subscript o end fraction fraction numerator Z e squared over denominator 2 r end fraction, is the total energy. 
For nth orbit, E can be written as En,
straight E subscript straight n space equals negative space fraction numerator 1 over denominator 4 πε subscript straight o end fraction fraction numerator Ze squared over denominator 2 straight r subscript straight n end fraction italic space                           ... (2) 
Now, using Bohr's postulate for quantization of angular momentum, we have
mvr space equals space fraction numerator nh over denominator 2 straight pi end fraction
rightwards double arrow straight v space equals space fraction numerator nh over denominator 2 πmr end fraction 

Putting this value of v in equation (1), we get
Error converting from MathML to accessible text.
rightwards double arrow space straight r space equals space fraction numerator straight epsilon subscript straight o straight h squared straight n squared over denominator πmZe squared end fraction

rightwards double arrow space straight r space equals space fraction numerator straight epsilon subscript straight o straight h squared straight n squared over denominator πmZe squared end fraction 

Now, putting value of rn in equation (2), we get
Error converting from MathML to accessible text. 
R is the rydberg constant. 

For hydrogen atom Z =1,
straight E subscript straight n space equals space fraction numerator negative Rch over denominator straight n squared end fraction
If ni and nf are the quantum numbers of initial and final states and Ei & Ef are energies of electron in H-atom in initial and final state, we have 

straight E subscript straight i space equals negative space Rhc over straight n subscript straight i squared space and space straight E subscript straight f space equals space fraction numerator negative Rhc over denominator straight n subscript straight f squared end fraction 
If comma space straight upsilon space is space the space frequency space of space emitted space radiation comma space we space get space
straight nu space equals space fraction numerator straight E subscript straight i space minus space straight E subscript space straight f end subscript over denominator straight h end fraction

straight nu space equals space fraction numerator negative Rc over denominator straight n subscript straight i squared end fraction minus open parentheses fraction numerator negative Rc over denominator straight n subscript straight f squared end fraction close parentheses space equals space Rc open square brackets 1 over straight n subscript straight f squared space minus space 1 over straight n subscript straight i squared close square brackets

That is, when electron jumps from ni = 4 to nf = 3.21 .
Radiation belongs to Paschen, Balmer and Lyman series.

Sponsor Area