-->

Electric Charges And Fields

Question
CBSEENPH12038958

Obtain the formula for the electric field due to a long thin wire of uniform linear charge density λ without using Gauss’s law. [Hint: Use Coulomb’s law directly and evaluate the necessary integral.] 

Solution

Consider a long thin wire of uniform linear charge density, λ

To find: Formula for electric field due to this wire at any point P at a perpendicular distance PC = r from the wire. 

Consider a small element of length dx of the wire with centre O, such that OC = x. 

Charge on the element, q = λ.dx 

So, electric intensity at P due to the element is given by,  

dE= 14πεoλ.dxOP2 = λ . dx4πεo(r2 + x2) 

Now, dE can be resolved into two rectangular components, that is dE cos θ in a perpendicular direction and dE sin θ in a parallel direction. 

The parallel component will be cancelled by the parallel component of the field due to charge on a similar element dx of wire on the other half.

The radial components get added. 

Therefore, 

Effective component of electric intensity due to the charge element, dE' =dEcos θ 

dE= λ.dx cos θ4πεo (r2+x2)                         ...(1) 

From  OCP, x = r tan θ

 dx = r sec2θ  

Now, r2  + x2  = r2  + r2 tan 2 θ = r2  (1+ tan2 θ) = r2  sec2  θ

From equation (1), we have 

dE' = λ r sec2θ 4πεor2 sec2θcos θ 

 dE= λ4πεo r  cos θ  

Since the wire has infinite length, it’s ends A and B are infinite distances apart. 

Therefore, θ varies from -π2to +π2

So, Electric Intensity at P due to the whole wire is given by, 

      E=-π2+π2λ4πεo r cos θ  

 E= λ4πεo r sin θ-π2+π2 

         = λ2πεo r , is the required electric field intensity.