-->

Wave Optics

Question
CBSEENPH12038757

We are given the following atomic masses: 

U92238 = 238.05079 u     He24 = 4.00260 uTh90234 = 234.04363 u    H11 = 1.00783 uPa91237 = 237.05121 u 

Here the symbol Pa is for the element protactinium (Z = 91). 

(a) Calculate the energy released during the alpha decay of U92238. 

(b) Calculate the kinetic energy of the emitted α-particles. 

(c) Show that U92238 cannot spontaneously emit a proton.

Solution

(a) The alpha decay of U92238 is given by, 

                 U92238 α  Th90234 + He24 

The energy released in this process is given by 

              Q = (Mu - MTh - MHe) c2    ... (1)

Substituting the atomic masses as given in the data in equation (1), we find 
                          Q = (238.05079 - 234.04363 - 4.00260) u x c2 
   = (0.00456 u) c2= (0.00456 u) (931.5 MeV/u)= 4.25 MeV 

(b) The kinetic energy of the α- particle is, 

 Eα  A-4AQ       = 234238×4.25       = 4.18 MeV 

(c) If U92238  spontaneously emits a proton, the decay process would be, 

             U92238  Pa91237 + H11 

The Q for this process to happen is, 

= (MU - MPa - MH) c2 = (238.05079 - 237.05121 - 1.00783) u × c2= (-0.00825 u) c2= -(0.00825 u) (931.5 MeV/u)= -7.68 MeV 

Since the Q-value for this process is negative, it cannot proceed spontaneously and will require 7.68 MeV energy. 

Some More Questions From Wave Optics Chapter