Sponsor Area

Wave Optics

Question
CBSEENPH12038720

It is proposed to use the nuclear fusion reaction
H12+H12  He24
in a nuclear reactor of 200 MW rating. If the energy from the above reaction is used with a 25% efficiency in the reactor, how many grams of deuterium fuel will be needed per day? 
(The masses of H12 and He24 are 2.0141 atomic mass unit and 4.0026 atomic mass unit (u) respectively.)

Solution
The given nuclear fusion reaction is, 

                 H12 + H12  He24 

The 'mass defect' for this reaction is, 

m = (2 × 2.0141 - 4.0026) u          = (4.0282 - 4.0026) u          = 0.0256 u 

Therefore, 
Energy released is,

  E' = 0.0256 × 931 MeV          = 23.8336 MeV         = 23.8336 × 1.6 × 10-13J           = 38.134 × 10-13J 

Since the reaction has a utilization efficiency of 25%, the energy utilized per reaction is, 

E = 38.134 × 10-13 × 25100J        = 9.533 × 10-13J 

The reactor rating is 200 MW. 

Hence, the total energy required per day is, 

E = 200 × 106×24×60×60 s 

  = 172.8 × 1011J 

Now, 2 deuterium atoms provide us with an 'available energy' of 9.533 x 10-13J. 

Hence, the number of deuterium atoms needed per day is, 
                             n = EE = 172.8 × 1011 ×29.533 × 10-13                    = 36.25 × 1024 

Now, 1 mole = 6.02 × 1023 atoms of deuterium has a mass of 2.0141 g.

Thus, the mass of deuterium needed per day is, 

     m = 2.0141 × 36.256.02 × 1023× 1024g      = 121.3 g.

Some More Questions From Wave Optics Chapter