-->

Wave Optics

Question
CBSEENPH12038718

An unstable element is produced in nuclear reactor at a constant rate R. If its half-life β--decay is T1/2, how much time, in terms of T1/2, is required to produce 50% of the equilibrium quantity?

Solution

We have, 

Rate of increase of element = number of nuclei by reactor1 second-number of nuclei decaying1 second

That is, 
                 dNdt = R - λN   or   dNdt+λN  = R 
                      
The solution to this is the sum of the homogeneous solution, 
              Nh = ce-λt, where c is a constant, and

a particular solution, Nl = Rλ. 

Therefore, the required solution is, 

                       N = Nh+Np = ce-λt+Rλ 

The constant c is obtained from the requirement that the initial number of nuclei be zero, 
                           N(0) = 0 = c+Rλ  
  c = -Rλ
so that,                N = Rλ(1-e-λt) 

The equilibrium value is (t) = R/λ. 

Setting N equal to 1/2 of this value gives, 

                  12Rλ = Rλ(1-e-λt) 

                       e-λt = 12    

           t = ln 2λ = T1/2 

The result is independent of R.

Some More Questions From Wave Optics Chapter