-->

Wave Optics

Question
CBSEENPH12038603

A single electron, orbits around a stationary nucleus of charge ze, where z is a constant and e is the electronic charge. It requires 47.2 eV to excite the electron from the second Bohr orbit to 3rd Bohr orbit. Find,
(i) The value of z.
(ii) The energy required to excite the electron from the third to the fourth Bohr orbit.
(iii) The wavelength of electromagnetic radiation required to remove the electron from the first Bohr orbit to infinity.
(iv) The kinetic energy, potential energy and angular momentum of the electron in the first Bohr orbit.
(v) The radius of the first Bohr orbit.
(Ionisation energy of hydrogen atom = 13.6 eV. Bohr radius = 5.3 × 10–11 m, velocity of light = 3 × 108 m/s and Planck's constant = 6.6 × 10–34 Js)

Solution
Given,
Amount of energy required to excite the electron from second orbit to 3rd orbit = 47.2 eV

(i) Change in energy for a general hydrogen-like atom is, En2 - En1 = Z2E01n12-1n22eV  

where E0 is the ionisation energy of hydrogen atom.
Now,
         E = Z2 × 13.6 122-132       = 47.2 

 
Z2×13.636×5 = 47.2 

 
  Z2 = 47.2×3613.6×5 = 25Z = 5 

(ii) Energy required to excite the electron from third to fourth orbit,
 
      E4-E3 = 52×13.6132-142eV
                 = 25×13.6×7144 = 16.53 eV

(iii) Energy required to excite the electron from ground state to infinity, 

E - E1 = Z2 × 13.6 112-1                   = 13.6 × 25 eV

Thus, wavelength of electromagnetic radiation required to remove the electron from first Bohr orbit to infinity is,

λ = hcE   = (6.6 × 10-34) × 3 × 10813.6 × 25 × 1.6 × 10-19    = 0.03640 × 10-7    = 36.4 × 10-10    = 36.4  Å

(iv) Kinetic energy of first Bohr orbit is numerically equal to the energy of the orbit. 

Therefore, 
                E1 = -Z2E0       = -25 × 13.6 eV 

          K.E. = 25×13.6×1.6×10-19J          = 544×10-19J

Potential energy of electron = -2×K.E.
                                           = -2×544×10-19J= -1088 × 10-19J 

Angular momentum of the electron is given by, 

             L = mvr = nh2π = h2π

      n = 1 for first bohr orbit. 

 i.e.,  L = 6.6×10-342π   = 1.05×10-34Js 

(v) Radius r1 of the first Bohr orbit is, rn = n2r0Z  for n = 1. 

That is, r1 = 12×5.3×10-115 = 1.06×10-11m.
E - E1 = Z2×13.6112-1 = 13.6×25 eV