Sponsor Area

Wave Optics

Question
CBSEENPH12038671

Find the Q-value and the kinetic energy of the emitted α-particle in α-decay of (a) Ra88226 and (b) Rn86220
Given   mRa88226 = 226.02540 u;   mRn86222 = 222.01750 u;mRn86220 = 220.01137 u;   mPo84216 = 216.00189 u. 


Solution

(a) The reaction invoved is,  

                   Ra88226  Rn86222 + He24

The difference in mass between the original nucleus and the decay products = 226.02540 u - (222.01750 u  + 4.00260 u)
                                    = + 0.0053 u 

 Energy equivalent or Q-value  = 0.0053 x 931.5 MeV 

                                                  = 4.93695 MeV 

                                                  = 4.94 MeV 

The decay products would emerge with total kinetic energy 4.94 MeV.

Momentum is conserved. If the parent nucleus is at rest, the daughter and the α-particle have momenta of equal magnitude p but, in the opposite direction.

Kinetic energy,  K = p22m. 

Since, p is the same for the two particles therefore the kinetic energy divides inversely as their masses.

The α-particle gets 222222+4 of the total i.e., 222226×4.94 MeV or 4.85 MeV. 


(b) The difference in mass between the original nucleus and the decay products = 220.01137 u - (216.00189 u + 4.00260 u)
                                                = 0.00688 u
 Q-value or Energy equivalent = 0.00688 x 931.5 MeV
                                                 = 6.41 MeV
Energy of the alpha particle, Eα= 216216+4×6.41 MeV = 6.29 MeV. 

Some More Questions From Wave Optics Chapter