-->

Wave Optics

Question
CBSEENPH12038667

Obtain the maximum kinetic energy of β-particles, and the radiation frequencies of γ decays in the decay scheme shown in Fig. You are given that
m (198Au) = 197.968233 u
m (198Hg) = 197.966760 u

Solution

To obtain the maximum kinetic energy of β- particles = ? 

Radiation frequency, v = (E2 -E1)h

Frequency, v(γ1) = (1.088-0) ×1.6×10-136.62 ×10-34  

                         = 2.63 × 1020 s-1  

 1 MeV = 106 × 1.6 × 10-19J1 MeV = 1.6 × 10-13J


Frequency, v(γ2) = (0.412-0) × 1.6 × 10-136.62 × 10-34                               = 9.96 × 1020s-1Frequency, v(γ3) = (1.088-0.412) ×1.6×10-136.62×10-34                                 = 1.63×1020s-1 

The emission process of β1- decay may be represented as:
             Au79198  Hg80198 + e-10 + E(β1-) + E(γ1)

where,               E(γ1) = 1.088 MeV ( as per the fig.)

Now,
      E(β1-) = m Au79198 - mHg80198 - me × 931.5 - E(γ1)

where,

m( 79198Au)  and m  80198Hg are masses of the  79198Au and Hg80198 nuclei. 

 Eβ1- = M  79198Au -79 me - M Hg80198 - 80 me-me × 931.5-1.088

         = M  79198Au - M 80198Hg × 931.5 - 1.088 

          = (197.968233 - 197.966760) x 931.5 - 1.088
          = 1.372 -1.088 = 0.284 MeV 

The emission process of β2- decay may be represented as: 

            Au79198 Hg80198 + e-10 + E(β2-) + E(γ2) 

As in case of β1- decay, it can be deduced in a similar manner.  

  E(β2-) = M Au79198 -MHg80198 × 931.5 - E (γ2)   

             = 1.372 - 0.412 = 0.960 MeV.

Some More Questions From Wave Optics Chapter