-->

Wave Optics

Question
CBSEENPH12038664

Consider the D-T reaction (deuterium-tritium fusion)
H12 + H13   He24  +n
(a) Calculate the energy released in MeV in this reaction from the data:
mH12 = 2.014102 umH13 = 3.016049 u
(b) Consider the radius of both deuterium and tritium to be approximately 2.0 fm. What is the kinetic energy needed to overcome the Coulomb repulsion between the two nuclei? To what temperature must the gas be heated to initiate the reaction?
(Hint: Kinetic energy required for one fusion event = average thermal kinetic energy available with the interacting particles = 2(3kT/2); k = Boltzman's constant, T = absolute temperature.)

Solution

(a) The reaction process is,  

               H12 +H13  He24 + n + Q
            Q-value  = [mass of H12 + mass of H13 - mass of He24 -mass of n]  x 931 MeV  

                 = (2.014102+3.016049 -4.002603-1.00867) × 931 MeV = 0.018878 × 931 = 17.58 MeV 
(b) Repulsive potential energy of two nuclei when they almost touch each other is given by, 

          q24πε0(2r) = 9×109(1.6 ×10-19)22×2×10-15joule 

                         = 5.76 × 10-14J 

Classically, this amount of K.E. is at least required to overcome Coulomb repulsion.

Now, using the relation, 

      KE = 32kT    T = 2K.E.3k             = 2×5.76×10-143×1.38×10-23             = 2.78 × 109K 

though the temperature required for triggering the reaction is somewhat less practically.

Some More Questions From Wave Optics Chapter