-->

Wave Optics

Question
CBSEENPH12038650

The radionuclide C11 decays according to C611  B511+e++v;  T1/2 = 20.3 min.
The maximum energy of the emitted positron is 0.960 MeV. Given the mass values:
mC611 = 11.011434 u  and  m B511 = 11.009305 u.
Calculate Q and compare it with the maximum energy of the positron emitted.

Solution

For the given reaction, mass defect is, 
                               m =  [m C611 - 6me - m B511 - 5 me+me        =  mC611 - m(B511) -  2 me        =  11.011434 u - 11.009305 u - 2 × 0.000548 u        =  0.001033 u

Now, Q-value is , 

              Q = 0.001033 × 931.5 MeV     = 0.962 MeV 

which, is the maximum energy of the positron. 
We have, 
                     Q = Ed+Ee+Ev 
The daughter nucleus is too heavy compared to e+ and v. So, it carries negligible energy (Ed ≈ 0). If the kinetic energy (Ev) carried by the neutrino is minimum (i.e., zero), the positron carries maximum energy, and this is practically all energy Q.
Hence, maximum E
e≈ Q.

Some More Questions From Wave Optics Chapter