-->

Wave Optics

Question
CBSEENPH12038577

Obtain an expression for the frequency of radiations emitted when a hydrogen atom de-excites from level n to level (n – 1). For large n, show that the frequency equals the classical frequency of revolution of the electron in the orbit.

Solution
The frequency v of the emitted radiation when a hydrogen atom de-excites from level n to level (n — 1) is given by, 
                E = hv = E2-E1 v = 12mc2α2h1n12-1n22  where   α = 2πKe2ch = fine structure constant v = 12mc2α2h1(n-1)2-1n2 = mc2α22h  n2-(n-1)2n2 (n-1)2   = mc2α2(n+n-1) (n-n+1)2hn2 (n-1)2v = mc2α2(2n-1)2h n2 (n-1)2. 

For large n, (2n - 1)2n,   and 

                    (n - 1) n

Therefore,   v = mc2α2. 2n2h n2. n2 = mc2α2hn3

On putting,
         α = 2π Ke2ch,   we get   v = mc2hn3.4π2K2e4c2h2 

i.e.,    v = 4π2mK2e4n3h3               ... (1)

In Bohr's atomic model, velocity of electron in nth orbit is, v = nh2π mr ; and 

Radius of nth orbit is, r = n2h24π2mKe2              (  Z = 1) 

  Frequency of revolution of electron is, 

v = v2πr = nh2π mr4π2mKe22π. n2h2 

             v = Ke2nh .r = Ke2nh4π2mKe2n2h2v = 4π2mK2e4n3h3  which is same as (1). 

Hence proved that, for large values of n, classical frequency of revolution of electron in nth orbit is the same as the frequency of radiation emitted when hydrogen atom de-excites from level (n) to level (n – 1).