-->

Wave Optics

Question
CBSEENPH12038576

The gravitational attraction between electron and proton in a hydrogen atom is weaker than the coulomb attraction by a factor of about 10–40. An alternative way of looking at this fact is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were bound by gravitational attraction. You will find the answer interesting.

Solution
The radius of the first orbit of hydrogen atom in Bohr's model is given by,  
            r = ε0 h2π me2 Multiplying and dividing by 4π r= 4πε0e2h24π2m  
Therefore, 

Radius,  r = n2h24π2mkZe2      here k = 14πε0          Z = 1,   n = 1 

If electrostatic force 14πε0.e2r2 is replaced by gravitational force GMmr2, we put GMm in place of e24πε0 in above expression. 

Hence, radius of first orbit under gravitational force,
          rG = 1GMm.h24π2m 

             = h24π2GMm2 , where     M = mass of protonm = mass of electron 

rG = (6.26 × 10-34)24 × (3.14)2 (6.67 ×10-11) × (1.672 × 10-27) × (9.1 ×10-31)2 

        = 6626×6626×10-744×3.14×3.14×667×16724×19×19×10-112 = 1.21 ×1029 m. 

The radius of the first orbit, when electron and proton are bounded together under the influence of graviatational force, turns out to be larger than the size of the universe.