-->

Wave Optics

Question
CBSEENPH12038491

A mercury lamp is convenient source for studying frequency dependence of photoelectric emission, since it gives a number of spectral lines ranging from the UV to the red end of the visible spectrum. In our experiment with rubidium photocell, the following lines from a mercury source were used:
λ1 = 3650 Å, λ2 = 4047 Å, λ3 = 4358 Å, λ4 = 5461 Å, λ5 = 6907 Å
The stopping voltages, respectively were measured to be:
V01 = 1.28 V,V02 = 0.95 V,V03 = 0.74 V, V04 = 0.16 V,V05 = 0V
(a)    Determine the value of Planck's constant h.
(b)    Estimate the threshold frequency and work function for the material.



Solution

Using the given data, we first determine frequency in each case and then plot a graph between stopping potential V0 and frequency v. 

v1 = cλ1 = 3 × 1083650 × 10-10 = 8.219 × 1014Hzv2  = cλ2 = 3 × 1084047 × 10-10 = 7.412 × 1014Hzv3 = cλ3 = 3 × 1084358 × 10-10 = 6.884 × 1014Hzv4 = cλ4 = 3 × 1085461 × 10-10 = 5.493 × 1014Hzv5 = cλ5 = 3 × 1086907 × 10-10 = 4.343 × 1014Hz 

Vversus v plot is shown below: 

 

The first four points lie nearly on a straight line which intercepts the frequency axis at threshold frequency v0 = 5.0 x 1014 Hz.

The fifth point v (= 4.3 x 1014 Hz) corresponds to v < v0, so there is no photoelectric emission and not stopping voltage is required to stop the current.

Slope of V
0 versus v graph is, 

V v = (1.28 - 0)V(8.2-5.0) × 1014s-1             = 4.0 × 10-15 Vs 

Now, from Einstein's photoelectric equation, 

Kinetic energy of photon, K.E. = eV = hv - W0 

                     eV = hv                      [W0 (work function) is  a constant ] 

                    Vν = he 

Hence,             he = 4.0 × 10-15 Vs 

Planck's constant, h = e × 4.0 × 10-15Js

                          h = 1.6 × 10-19 × 4.0 × 10-15Js 

                             = 6.4 × 10-34Js 

(b) Threshold frequency, v0 = 5.0 × 1014Hz
       Work function of the metal,  ϕ0 = hv0                                                                = 6.4 × 1034 × 5.0 × 1014

i.e.,   ϕ0 = 6.4 ×5×10-201.6 × 10-19eV = 2.00 eV is the required work function of the metal.






Some More Questions From Wave Optics Chapter