-->

Wave Optics

Question
CBSEENPH12038316

A ray of light passing through an equilateral triangular glass prism form air undergoes minimum deviation when angle of incidence is 3/4th of the angle of prism. Calculate the speed of light in the prism.

Solution

Angle of prism, A = 60o 
Refractive index of prism = 1.5 
Given, angle of incidence , i1=i234A = 3445o = 45o
As,                    A + δ = i1 + i
                60δ = 45o + 45

Then, angle of minimum deviation, δ =  90o - 60o                                                           = 30
We know that, velocity of light in vacuum = 3×108 m/s 
Now, using the formula, 

                μ = sin (A+δm)/2sin A/2 = cv
That is,  
                v = c sin A/2sin (A+δm)/2   = 3× 108  sin 30osin (60o + 30o)/2    = 3× 108 sin 30osin 45o    =  3× 108 ×0.50000.7071   = 2.12 × 108 m/s  
 
is the required speed of light in the prism.

Some More Questions From Wave Optics Chapter