-->

Wave Optics

Question
CBSEENPH12038300

A thin lens, made of material of refractive index μ has a focal length f. If the lens is placed in a transparent medium of refractive index ‘n’ (n < μ), obtain an expression for the change in focal length of the lens. Use the result to show that the focal length of a lens of the glass = becomes μw(μg-1)(μg-μw) times its focal length in air, when it is placed in water (μ = μw).

Solution
Here, we have a thin lens of refractive index 'μ' and focal length 'f'. This lens is placed in a transparent medium of refractive index 'n'.
Let, the radii if curvature of the lens be R1 and R2
Therefore, using lens makers formula , focal length is given by, 
          1f = (μ-1) 1R1-1R2                 ...(i) 

When the lens is put in a transparent medium, the refractive index of the material of the lens with respect to the medium = μn. 

Thus focal length f' of the lens in the medium is given by, 
        1f' = μn-1 1R1-1R2                 ...(ii) 

Now, from Eqns. (i) and (ii),  

               ff' = (μ-1)μn-1 

i.e.,         f' = (μ-1)n(μ-n).f                         ...(iii) 

Thus, change in focal length is, 

f = f' -f (μ-1)n(μ-n)f-f 

     = f(μ-1)n - (μ-n)(μ-n) 

     = fμn-n-μ+n(μ-n)
     = 1(μ-1) 1R1-1R2μn-μ(μ-n) 

     = R1R2(R2-R1) (μ-1)μ(n-1)(μ-n) 

f = R1R2(R2-R1)n(μ-n)-1(μ-1)            ...(iv) 

From equation (iii), we have  

                 f' = (μ-1)n(μ-n).f 

Putting,  μ = μg and n = μw 
where, 
μg is the refractive index of glass and, 
μw is te refractive index of water.  

          f' = (μg-1)μw(μg-μw). f 

The ray diagram is as shown below:

 




Some More Questions From Wave Optics Chapter