-->

Wave Optics

Question
CBSEENPH12038284

A prism is found to give a minimum deviation of 51°. The same prism gives a deviation of 62°48’ for two values of the angles of incidence, namely, 40°6’ and 82°42’. Determine the refractive angle of the prism and the refractive index of its material.

Solution
Angle of minimum deviaton of prism = 51o

The incident ray is deviated through an angle of 62°48’ (δ) wen angle of incidence = 40°6’.
The emergent ray, for which angle of emergence, e= 82°42’ is also deviated through the same angle δ.      [ Using principle of reversibility] 



Now,
                      δ = (i + e) - A
i.e.,                A = (i + e) - δ
                        = 40°6' + 82°42' - 62°48'
i.e.,,               A = 60°
which is the refracting angle of the prism. 

For minimum deviation, i = e. 

             δm = 2i - A
i.e.,              i = δmin+A2   
                     
= (51°+60°)2 =55°30'                
Which is the required angle of incidence at minimum deviation.

The refractive index of the material of the prism is given by

                    μ = sin δmin+A2sinA2 

i.e.,               μ = sin 51°+60°2sin60°2 

i.e.,               μ = 1.648.

Some More Questions From Wave Optics Chapter