Sponsor Area

Wave Optics

Question
CBSEENPH12038281

With the help of ray diagram, show the formation of image of a point object by refraction of light at a spherical surface separating two media of refractive indices nand n2 (n2 > n1) respectively. Using this diagram, derive the relation.

n2v-n1u = n2-n1R 

What happens to the focal length of convex lens when it is immersed in water? 

Solution
(i) In the ray diagram below, AMB is a convex surface separating two media of refractive indices n1 and n2 (n2> n1). Consider a point object O placed on the principal axis. A ray ON is incident at N and refracts along NI. The ray along ON goes straight and meets the previous ray at I. Thus, I is the real image of O.



From Snell's law,     n2 = sin isin r

                        n1 sin i = n2 sin r     n2n1 = sin isin r
                        n1i = n2r 

In  NOC,          i = α + γ
In  NIC,           γ = r - β
                          r = γ - β 

         n1 (α + γ) = n2(γ - β) 

i.e.,       n1α + n2β = (n2-n1) γ 

But,       α  tan α = NPOP = NPOM                                 [P is close to M]

             β  tan β = NPPI = NPMI

             γ  tan γ =  NPPC = NPMC

       n1. NPOM+n2. NPMI = (n2-n1) NPMC

                 n1OM+n2MI = n2-n1MC 

Now, using Cartesian sign convention,
                               OM = -u,   MI = +v,   MC = + R

            n1-u+n2v = n2-n1R

             n2v-n1u = n2-n1R 

The lens makers formula gives us the relationship,
                1f=(μ-1) 1R1-1R2
That is, focal length and refractive index has inverse dependence.
Refractive index of water is greater than that of air and so, focal length of the lens will reduce when immersed in water.




Some More Questions From Wave Optics Chapter