-->

Wave Optics

Question
CBSEENPH12038176

A prism is made of glass of unknown refractive index. A parallel beam of light is incident on a face of the prism. The angle of minimum deviation is measured to be 40°. What is the refractive index of the material of the prism? The refracting angle of the prism is 60°. If the prism is placed in water (refractive index 1.33), predict the new angle of minimum deviation of a parallel beam of light.

Solution

Given, 

Refracting angle of prism, A = 60°Angle of minimum deviation,  δm = 40° 
Refractive index of glass w.r.t air, aμg = SinA+δm2SinA/2 
          μga = sin 50°sin 30° = 0.7660.54 = 1.532 

After the prism is placed in water, 

Refractive index of water = 1.33
Using the formula,

                μgω = sinA+δ'm2Sin A/2

              μgaμwa = sin 60+δ'm2sin 30° 

sin 30°+δ'm2 = 12×1.5321.33 = 0.5759

   30°+δ'm2 = 35°10' 

        A+δ'm2= 35o10' 
           A + δ'm = 70o 20'δ'm = 70o 20' - A       = 70020' - 60o 

i.e.,     δ'm = 10°20'.

which is the reqiured angle of minimum deviation. 

Some More Questions From Wave Optics Chapter