-->

Wave Optics

Question
CBSEENPH12038175

Figures (a) and (b) show refraction of a ray in air incident at 60° with the normal to a glass-air and water-air interface, respectively. Predict the angle of refraction in glass when the angle of incidence in water is 45° with the normal to a water-glass interface. [ Fig. 9.34 (c)].


Solution

(a)
Given, 

Angle of incidence, i = 60°Angle of refraction,  r = 35° 

Using Snell's law, we have 

Refractive index of glass with respect to air,     μga = sin isin r = sin 60°sin 35°

         = 0.86600.5736 = 1.51                                   

(b) 

Angle of incidence, i = 60°Angle of refraction, r = 41° 

Using Snell's law, 

Refractive index of water wr.to air, μwa = sin isin r = sin  60°sin 41° = 1.32 

(c)
Angle of incidence in water, i =45°

Refractive index of glass wr.to water,
 μgω = μgaμwa =sin isin r
         1.511.32 = sin 45°sin r = 0.7071sin r

 sin r = 1.32 × 0.70711.51 = 0.6181 

    r = 38.2°, which is the required angle of refraction of glass.


       

Some More Questions From Wave Optics Chapter