-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12038024

A circuit is set-up by connecting L = 100 mH, C = 5 μF and R = 100 Ω in series. An alternating emf of 150 2 volt,  500πHz is applied across this combination. Calculate the impedance of the circuit. What is the average power dissipated in (i) the resistor (ii) the capacitor (iii) the inductor and (iv) the complete circuit?

Solution
Given, a circuit with a set of components.
Inductance, L = 100 mH
Capacitance, C = 5 μF 
Resistance, R = 100 Ω
Emf applied across the combination, E =150 2 volt
Frequency of the source, f = 500/π Hz

Now, using the formula for impedence of the circuit, we have

               Z = R2+(XL-XC)2

Inductive reactance, 

XL = ωL= 2πfL                = 2π × 500π × 100 × 10-3                = 100 Ω  

Capacitive reactance,

XC = 1ωC = 12πfC                     = 12π500π×5×10-6

         XC = 200 Ω 

and,
                   Z = (100)2+(100-200)2  = 141.4 Ω

Current flowing across the circuit, 

                      I = VZ  I =150 2100 2   = 1.5 A. 

Now, average power dissipated across each component is,
(i) Across resistor is,
I2R = 1.5 x 1.5 x 100
i.e., W = 225 W. 

(ii) Across capacitor is zero. 

(iii) Across inductor is zero. 

(iv) Average power dissipated in the complete circuit is same as the power dissipated across resistor i.e., 225 W.

Some More Questions From Electrostatic Potential and Capacitance Chapter