-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12038013

A series LCR circuit is connected to an a.c. source of 220 V – 50 Hz. If the readings of voltmeters across resistor, capacitor and inductor are 65 V, 415 V and 204 V; and R = 100 Ωcalculate: (i) current in the circuit; (ii) value of L, (iii) value of C and (iv) capacitance required to produce resonance with the given inductor L.

Solution
Given, a series LCR circuit.
Effective voltage, E
v = 200 V
Frequency of AC supply, f = 50 Hz
Resistance, R = 100 Ω
Voltage across resistor, V
R = 65 V
Voltage across capacitor, V
c = 415 V
Voltage across inductor, V
L = 204 V 

(i) If, Iv is the current in the circuit, then
                   VR = IV × R65 = IV × 100 

                     IV = 0.65 A. 

(ii) Using the formula,
                    VL = IV XL 

                    XL = VLIV = 2040.65 = 313.85 Ω 

                     XL = ωL = 2πfL = 313.85

                      L = 313.852πf = 313.852×3.14×50

                       L = 1.0 H. 

which is the required value of inductor.


(iii) Using the relation, 

          VC = IV XC

          XC = VCIV = 4150.65 = 638.5 Ω             XC = 1ωC = 12πfC 

Now,          
 C = 12πf  XC     = 12 × 3.14 × 50 × 638.5 

 C = 4.99 × 10-6F 

(iv) Consider, C be the capacitance that would produce resonance with L = 1.0 H, then
                   f = 12πLC' 

                 C' = 14π2f2L 

                 C' = 14 × (3.14)2 × (50)2 × 1    = 10.1 × 10-6F     = 10.1 μF. 

Some More Questions From Electrostatic Potential and Capacitance Chapter