-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12038012

What is meant by root mean square value of alternating current? Derive an expression for r.m.s. value of alternating current.

Solution

Root mean square (r.m.s.) or virtual value of a.c.: It is that steady current, which when passed through a resistance for a given time will produce the same amount of heat as the alternating current does in the same resistance and in the same time. It is denoted
Irms or Iv.

Derivation of r.m.s. value of current:

The instantaneous value of a.c. passing through a resistance R is given by
                  I = I0 sin ωt
The alternating current changes continuously with time.

Suppose, that the current through the resistance remains constant for an infinitesimally small time dt. 

Then, small amount of heat produced the resistance R in time dt is given by
dH = I2 R dt
     = (10 sin ωt)2 R dt
     = I02 R sin2 ωt dt. 

The amount of heat produced in the resistance in time T/2 is
                          H = 0T/2 I02 R sin2 ωt dt     = I02 R 0T/21-cos 2ωt2dt

                          H = I02R2t-sin  2ωt2ω0T/2

                         H = I02R2T2-sin 2ωt.T22ω-0

                         H = I02R2T2-sin 2. 2πT.T22ω

                         H = I02R2T2-sin 2π2ω

                         H = I02R2T2-sin  2π2ω 

                         H = I02R2.T2                 ...(i)       sin 2π = 0
             
If Irms be the r.m.s. value of a.c., then by definition,
                         H = I2rms R T2                                 ...(ii) 

From equtions (i) and (ii), we have
                      I2rmsRT2 = I02R2.T2 

                            I2rms = I022 

                             Irms = I02 = 0.707I0.

Some More Questions From Electrostatic Potential and Capacitance Chapter