-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12038010

An emf Vo sin ωt is applied to a circuit which consists of a self-inductance L of negligible resistance in series with a variable capacitor C. The capacitor is shunted by a variable resistance R. Find the value of C for which the amplitude of the current is independent of R.

Solution
Let us make use of phasor algebra to make the problem a little easier.
The complex impedance, of the circuit as shown in the figure.
 

Impedence, Z = jωL + Z' 

where Z' is complex impedance due to C and R in parallel and is given by

1Z' = 1R+jωC = 1+jωCRR 

                  Z' = R1+jωCR    = R(1-jωCR)1+ω2C2R2

               Z = jωL + R(1-jωCR)1+ω2C2R2 

                      =  R1+ω2C2R2+jωL - ωCR21+ω2C2R2
                                   
The magnitude of Z is thus given by,
              Z = R2(1+ω2C2R2)2+ωL - ωCR21+ω2C2R22
                      Z2 = R21+ω2C2R22+ω2L2+ω2C2R4(1+ω2C2R2)2-2ω2LCR21+ω2C2R2

                   = R2-2ω2LCR21+ω2C2R2+ω2L2 

The peak value of current will be independent of R, if Z or Z2 is also independent of R.

It is possible when 

R2-2ω2 LCR2 = 0,   or C = 12ω2L

Some More Questions From Electrostatic Potential and Capacitance Chapter