-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12038000

An a.c. voltage E = E0 sin ωt is applied across an inductor L. Obtain an expression for current I.

Solution
Let, a pure inductance L connected across a source of alternating emf given by E = E0 sin ωt 

 

The rate of change of current in the circuit is dIdt. (If I is the current through the circuit). 

∴ Instantaneous induced emf across inductance = -L dIdt (By Kirchhoff's law) 

∴ The net emf is
                       E-LdIdt = 0
                                E = LdIdt
                           dI = ELdt     = E0L sin ωt dt

                            dI = E0L sin ωt dt
                                I = -E0ωL cos ωt   = -I0 cos ωt 
where,
             I0 = E0ωL is the peak value of alternating current.  

Here, ωL has the units of resistance and it is called inductive reactance.

Current, I in the circuit is expressed as,

    I = – I0 cos ωt
      = I
0 sin (ωt – π/2).

Some More Questions From Electrostatic Potential and Capacitance Chapter