-->

Current Electricity

Question
CBSEENPH12038069

A parallel plate capacitor (Fig.) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s-1.
(a)    What is the rms value of the conduction current?
(b)    Is the conduction current equal to the displacement current?
(c)    Determine the amplitude of B at a point 3.0 cm from the axis between the plates.


Solution

Given, a parallel plate capacitor made of circular plates.

(a) Here,
Radius of the circular plate, R = 6.0 cm
 Capacitance of the plates, C = 100 ρF = 100 × 10-12FAngular frequency, ω = 300 rad s-1

Erms = 230 V

Therefore, 

           Irms = ErmsXC = Erms1ωC = Erms × ωC 

        Irms  = 230 × 300 × 100 × 10-12
                 = 6.9 × 10-6A = 6.9 μA 

(b) Yes, the conduction current is equal to the displacement current.

I = ID,  whether conduction current, I is steady d.c. or a.c. This can be shown below :

          ID = ε0d(ϕE)dt = ε0 ddt(EA)       ϕE = EA

      ID = ε0AdEdt
            = ε0AddtQε0A       E = σε0 = Qε0A 
     ID = ε0A × 1ε0AdQdt    = dQdt = I
(c) We know that, 

                      B = μ02πrR2ID 

This formula goes through even if displacement current, ID (and therefore magnetic field B) oscillates in time. The formula above shows that they oscillate in phase.
Since I
D = I, we have
                      B = μ0rI2πR2 

If I = I0, the maximum value of current, then
Amplitude of B = maximum value of B 

= μ0rI02πR2  = μ0r2Irms2πR2                          I0 = 2 Irms= 4π × 10-7 × 0.03 × 2 × 6.9 × 10-62 × 3.14 × (0.06)2T= 1.63 × 10-11T.