-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12038057

A series LCR circuit with L = 0.12 H, C = 480 nF, R = 23 Ω is connected to a 230 V variable frequency supply.
(a) What is the source frequency for which current amplitude is maximum. Obtain this maximum value.
(b) What is the source frequency for which average power absorbed by the circuit is maximum. Obtain the value of this maximum power.
(c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
(d) What is the Q-factor of the given circuit?

Solution

(a) Here,
Inductance, L = 0.12 H 

Resistance, R = 23 ΩCapacitance, C = 480 nF = 480 × 10-9F
                               Rms voltage, Ev = 230  voltPeak voltage,E0 = 2 Ev = 2 × 230 volt. 

Maximum current, I0 = E0R2+ωL - 1ωC2 
I0 would be maximum, when
ωr = ω = 1LC     =10.12 × 480 × 10-9    = 4166.7 rad s-1 I0 = E0R        = 2 × 23023 = 14.14 amp. 

(b) Average power absorbed by the circuit is maximum, when I = I0
          Pav = 12I02R       = 12(14.14)2 × 23       = 2299.3 watt 

(c) The two angular frequencies for which the power transferred to the circuit is half the power at the resonant frequency,

                        ω = ωr± ω 
When,  
            ω = R2L         =232 × 0.12 =95.83 rad s-1 

∴ angular frequencies at which power transferred is half = ωr ± ∆ω
= 4166.7 ± 95.83 = 4262.3 and 4070.87 rad s–1

Current amplitude at these frequencies is
                    I02 = 14.141.414 = 10 A. 

(d)  Q-factor  = ωrLR = 4166.7 × 0.1223 = 21.74.

Some More Questions From Electrostatic Potential and Capacitance Chapter