-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12038054

Keeping the source frequency equal to the resonating frequency of the series LCR circuit, if the three elements L, C and R are arranged in parallel, show that the total current in the parallel LCR circuit is minimum at this frequency. Obtain the current rms value in each branch of the circuit for the elements and source specified in Exercise 11 for this frequency.

Solution

Given, an LCR circuit. L, C and R are arranged in parallel and the source frequency is kept equal to the resonating frequency.

Then,

Using the formula for resonant frequency,
ωr = 1LC      = 15 ×80×10-6     = 1400 × 10-6      = 50 rad s-1 

Since elements are in parallel, reactance X of L and C in parallel is given by 

1X = 1ωL = 11/ωC= 1ωL-ωC 

Impedance of R and X in parallel is given by
                                 1Z = 1R2+1X2 = 1R2+1ωL-ωC2
                    1Z = 1+R21ωL-ωC2R  

                      Z =  R1+R21ωL-ωC2 

which is less than resistance R.  

At resonant frequency,

                                      ωL = 1ωC   or   ωC = 1ωL 

and       1ωL-ωC = 0 

Then, impedance Z = R and will be maximum.

Hence, current will be minimum at resonant frequency in the parallel LCR circuit.

From Ex. 11: 

Inductance, L = 5H
Capacitance, C = 80 × 10
–6 F
Resistnace, R = 40 Ω.
 Erms = 230 V. 

Therfore,

IRrms = VrmsR = 23040 = 5.75 A.(IL)rms = VrmsωL = 23050 × 5 = 0.92 A.(IC)rms = Vrms1/ωC = 230 × 50 × 80 × 10-6 = 0.92 A.

Current through L and C will be in opposite phase. Hence, current in circuit will be only 5.75 A= VrmsR as, circuit impedance will be equal to R only.

Some More Questions From Electrostatic Potential and Capacitance Chapter