-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12037962

Figure shows a series LCR circuit connected to a variable frequency 230 V source. L = 5.0 H, C = 80 μF, R = 40 Ω.

(a) Determine the source frequency which drives the circuit in resonance.
(b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
(c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.

Solution

Here, we are given a LCR circuit. 

Inductance, L = 5.0 H
Resistance, R = 40 Ω
Capacitance, C = 80 μF = 80 × 10-6F
Effective voltage, Ev = 230 volt 
 Peak voltage,  E0 = 2   Ev = 2 × 230 V 

(a) Resonance angular frequency is given by,
                ωr = 1LC    = 15×80×10-6     = 12 × 10-2     = 50 rad/sec. 

(b) Impedance of the circuit,

              Z = R2+ωL -1ωC2

At resonance,   ωL = 1ωC
Therefore, 

Z = R2 = R = 40 Ω 

Amplitude of current at resonating frequency

Peak value of current, I0 = E0z = 2×23040 = 8.13 ARms value of current, Iv = I02 = 8.132 = 5.75 A

(c) Potential drop across L

VL rms = Iv  ωr L           = 5.75 × 50 × 5.0            = 1437.5 V 

Potential drop across R

 VR  rms = Iv × R             = 5.75 × 40            = 230 volt 

Potential drop across C

 VC rms = Iv 1ωrC
          = 5.75 × 150 × 80 × 10-6= 5.754×103 = 1437.5 V 

Therefore, 

Potential drop across LC circuit 

VLC rms = VL rms - VC rms = 0 

Thus, the potential drop across the LC combination is zero at the resonating frequency.

Some More Questions From Electrostatic Potential and Capacitance Chapter