-->

Current Electricity

Question
CBSEENPH12037929

Three pieces of copper wires of lengths in the ratio 2:3:4 and with diameters in the ratio 4:5:6 are connected in parallel. Find the current in each branch if the main current is 5 A.


Solution

Let,
l1, l2, and l3 be lengths of three copper wires.
D1, D2 and D3 be their diameters and,
A1, A2, A3 be their area of cross section. 

Given,  

l1: l2: l3 = 2: 3: 4

i.e.,  l1 = 2 l, l2 = 3 l and l3 = 4 l.

Also, given,

D1: D2: D3 = 4: 5: 6

∴ A1: A2:A= (4)2: (5)2: (6)2 = 16: 25: 36
That is,
A1 = 16 A, A2 = 25 A and A3 = 36 A

If ρ is the resistivity of copper, then R1 = ρl1A1 = ρ × 2 l16 A = 18ρlAR2 = ρl2A2 = ρ ×3l25 A = 325ρlA
and,  
R3 = ρl3A3 = ρ4l36A = 19ρlA 

  R1:R2:R3 = 18:325:19                  = 25 ×9:3 × 8 ×9:8 ×25 

or R1:R2:R3=  225 : 216 : 200 

 R1 =225 R, R2 = 216 R and,R3 = 200 R 

Let I1, I2 and I3 be the currents through the wires of resistances R1, R2 and R3 respectively. Then,

I1+I2+I3 = 5                 ...(i)

and,

I1×225 R = I2 × 216 R = I3 × 200 R

 I1×225 = I2 × 216 = I3 × 200

 I2 = 225 I1216 = 1.04 I1   
and,
    I3 = 225 I1200 = 1.125 I1

Putting these values in equation (i) we get, 

I1 + 1.04 I1 + 1.125 I1 = 5
on solving, we get
 I1 = 1.58 A
 I2 = 1.04 x 1.58 = 1.64 A
and, 
 I3 = 1.125 x 1.58 = 1.78 A.