Prove that the current density of a metallic conductor is directly proportional to the drift speed of electrons.
Consider, a conductor of length l and area of cross-section A having n electrons per unit length, as shown in the figure.
Volume of the conductor , V = Al
∴ Total number of electrons in the Conductor = Volume x electron density = Al x n .
If e is the charge of an electron, then total charge contained in the conductor, Q = en.Al
Electric field in the conductor when potential difference V is applied across the conductor, E= V/I
Under the influence of this field E, free electrons begin to drift in a direction opposite to that of the direction of field.
Time taken by electrons to cross-over the conductor is
where, vd is the drift velocity of electrons.
Therefore, current flowing through the conductor is given by
[ n, e A are all constant]
Thus, current density is proportional to drift velocity.