-->

Electric Charges And Fields

Question
CBSEENPH12037887

An infinitesimally small bar magnet of dipole moment M is pointing and moving with the speed v in the x-direction. A small closed circular conducting loop of radius a and of negligible self-inductance lies in the y-z plane with its centre at x = 0, and its axis coinciding with the x-axis. Find the force opposing the motion of the magnet, if the resistance of the loop is R. Assume that the distance x of the magnet from the centre of the loop is much greater than a.

Solution
Given,
A very small bar magnet of dipole moment Mmoving with speed v in the x-direction. 

Field due to the bar magnet at distance x (near the loop)

                  Ba = μ04π. 2Mx3               (axial line)

Flux linked with the loop, ϕ = BA = πa2.μ04π.2Mx3 
Emf induced in the loop, e = -dt                                             = μ04π.6π Ma2x4.dxdt
                              = μ04π. 6π Ma2x4v.
Thus,
Induced current, i = eR = μ04π. 6π Ma2Rx4v. 

Let F be the force opposing the motion of the magnet. 

Power due to the opposing force = Heat dissipated in the coil per second
This implies,
                    Fv = i2R  F = i2Rv   = μ04π2×6π Ma2Rx42 x v2×Rv 

                    F = 94μ02 M2a4vRx8.