-->

Electric Charges And Fields

Question
CBSEENPH12037886

The current in a coil of self-inductance L = 2H is increasing according to the law i = 2 sin t2.
Find the amount of energy spent during the period when the current changes from 0 to 2 ampere.

Solution
Given,
Self inductance of the coil, L = 2 H
Let the current flowing throught he coil be 2 ampere at time = t
2

Then, 
            2 = 2 sin t2        t = π/2  

We have tocalculate, the amount of energy spent when current changes from 0 to 2 A.
Now,
Self induced emf is Ldidt. 
where, i is the instantaneous value of current.

If, dq is the amount of charge 
displaced in time dt then elementary work done  

 dW= Ldidt dq= Ldidtidt = Li di 
 
Therefore,

W = 0τLi di     = 0τL 2 sin t2 d2 sin t2W = 0τ8 L sin t2 cos t2 t dt     = 4L0τ sin 2t2 t dt 

Let,     θ = 2t2   = 4t dt dt = 4t 

  The integral becomes, 

                        W= 4Lsin θ 4 

                           = L(-cos θ)= -L cos 2t2 

                        W = -Lcos 2t20π/2    = 2L     = 2×2     = 4 J. 
 
That is, 4 Joule of nergy is spent when the current is raised to 2 Amperes.