-->

Electric Charges And Fields

Question
CBSEENPH12037885

A circular loop of radius 0.3 cm lies parallel to a much bigger circular loop of radius 20 cm. The centre of the small loop is on the axis of the bigger loop. The distance between their centres is 15 cm. (a) What is the flux linking the bigger loop if a current of 2.0 A flows through the smaller loop? (b) Obtain the mutual inductance of the two loops.


Solution
Given here,
Radius of bigger loop, r= 20 cm
Radius of small circular loop, r2 = 0.3 cm

Distance betwen the centers of smaller and bigger loop, x = 15 cm 

We know from the considerations of symmetry that M
12 = M21

Direct calculation of flux linking the bigger loop due to the field by the smaller loop will be difficult to handle. Instead, let us calculate the flux through the smaller loop due to a current in the bigger loop. The smaller loop is so small in area that one can take the simple formula for field B on the axis of the bigger loop and multiply B by the small area of the loop to calculate flux without much error.

Let 1 refer to the bigger loop and 2 the smaller loop.
Field B
2 at loop 2 due to crrent I1 in loop 1 is,

               B21 = μ0I1r122x2+r123/2 

Here x is distance between the centres.

Thus,
Flux on loop 2 due to current in loop 1 is,

                   ϕ21 = B21 × A2
                   ϕ21 = B2 πr22         = π μ0 r12 r222 x2+r123/2 I1 

But,             ϕ21 = M21 I1 

                M21 = πμ0r12r222x2+r123/2 =M12
and,             ϕ12 = M12I2 = πμ0r12r222x2+r123/2I2 
Therefore,
M12 = M21 = πμ0r12r222x2+r123/2

Numerical:

Using the given data
b) Mutual inducatance, M12 = M21 = π μ0 r12 r222 x2+r12 3/2

=π× 4π×10-7 × (20× 10-2)2× (0.3×10-2)2 2×(15 × 10-2)2 + (20 × 10-2)2 32

4.55 x 10–11 H

a) Flux linking with the bigger loop when I1 is 2.0 A is given by, 
                           ϕ21 = M21 I1

                                 = 4.55 x 10–11 x 2 
                                 = 9.1 x 10–11 Wb