-->

Magnetism And Matter

Question
CBSEENPH12037815

If δ1 and δ2 be the angles of dip observed in two planes at right angles to each other and δ is the true angle of dip, then prove that
cot2 δ1 + cot2 δ2 = cot2 δ

Solution
Given, δ1 and δ2 are the angles of dip right angle to each other in planes.
δ is the true angle of dip.

 

If horizontal and vertical components of earth's magnetic field are represented by B
and Bv respectively, then
                      tan δ = BVBH

Let, δ1 be the (apparent) dip in a plane which makes angle θ with the magnetic meridian.
In this plane, the vertical component will be B
V only but the effective horizontal component will be BH cos θ.

Therefore,

  tan δ = BVBH cos θ 

 tan δ1 = tan δcos θ       [   BV = BH tanδ ]

  cos θ = tan δtan δ1          = tan  cot δ1                        ...(i) 

Let, δ2 be the (apparent) dip in the second plane.
The angle made by this plane with the magnetic meridian will be (90° – θ). 
Effective horizontal component in this plane is BH cos (90° – θ) i.e., BH sin θ.

The vertical component will be Bv only.
  tan δ2 = BVBH sin θ = tan δsin θ

    sin θ = tan δtan δ2 = tanδ cot δ2        ...(ii) 

Squaring and adding equation (i) and (ii), we get
                  cos2θ + sin2θ = tan2δ cot2δ1 + tan2δ cot2δ2

                1 = tan2δ (cot2δ1+cot2δ2) 

               cot2δ = cot2δ1+cot2δ2  

Hence proved.