Sponsor Area

Current Electricity

Question
CBSEENPH12037526

Determine the current in each branch of the network shown in figure.

Solution
Consider the mesh ABDA, 
Now, Applying Kirchhoff’s loop rule we get,
– 10I1 – 5Ig + (I – I1) 5 = 0
 3I1 – I + Ig = 0                  ...(i) 

 

Consider the mesh BDCB,
Again, applying Kirchhoff’s loop rule we get,
– 5Ig – 10(1 – Il + Ig) + 5(I1 – Ig) = 0
 3I1 – 21 – 4Ig = 0              ...(ii)

Applying Kirchhoff’s loop rule to the mesh ABCEA,
– 10I1 – 5(I1 – Ig) –10I + 10 = 0
or 3I1 + 2I – Ig = 2                 ...(iii) 

Equations (i), (ii) and (iii) are simultaneous equations. On solving these equations, we will find the unknown values of current.

Adding (i) and (iii), we get
6I1 + I = 2                             ...(iv)

Multiplying (i) by 4 and adding in (ii), we get
15I1 – 6I0 = 0                         ...(v)

Solving equations (iv) and (v), we get
I1417A = 0.235 A

So, current in branch AB is 0.235 A. 

Putting the value of I1 in equation (v) and simplifying, we get
Total current, I = 1017 = 0.588 A 

Putting the values of I and I1 in equation (iii) and simplifying, we get
Ig = 217A = -0.118 A
The negative sign indicates that the direction of current is opposite to that shown in Fig. above.
So, current in branch BD is – 0.118 A. 

Current in branch BC is (I1-Ig) i.e.,  417--217 
i.e.,  617 or 0.353 A. 

Current in branch AD is (I – I1)
i.e.,  1017-417A i.e.,  617A  or 0.353 A 

Current in branch DC is (I1 – I1 + Ig)
i.e., 617+-217A or  417A  or  0.235 A .


Some More Questions From Current Electricity Chapter