-->

Moving Charges And Magnetism

Question
CBSEENPH12037589

An electron emitted by a heated cathode and accelerated through a potential difference of 2.0 kV, enters a region with uniform magnetic field of 0.15 T. Determine the trajectory of the electron if the field (a) is transverse to its initial velocity, (b) makes an angle of 30° with the initial velocity.

Solution

Potential difference, V = 2 KV = 2000 volt
Uniform magnetic field, B = 0.15 T 

(a) If magnetic field is transverse to initial velocity of electron then, the velocity vector has no component in the direction of magnetic field. 
∴ Force on electron = Bev sin 90° = Bev 

This force acts as the centripetal force 

               Bev = mv2r
             
                      r = mveB                       ...(1)

But,         12mv2 =eV                         ...(2) 

              v=2eVm
        r = meB2eVm               [From 1, 2]

            v = 1B2mVe   = 10.152×9.1×10-31×20001.6 × 10-19m    = 10-3m = 1.0 mm. 

The electron would move in a circular trajectory of radius 1.0 mm. The plane of the trajectory is normal to B. 

(b) If velocity makes an angle 30° with the direction of magnetic field, the velocity can be resolved into v and v||

i.e., v cos 30° and v sin 30° respectively.

Due to v the electron will move on a circular path. The resultant path will be a combination of straight line motion and circular motion which is called helical. 

Thus,        evB sin θ =  m(v sin θ)2rn 

for circular motion of radius rn 

                 ev × B = mv2rn
                        v = v sin θ
   
                         rn = mv sin θeB

 rn = 9.1 × 10-31 × 2.65 × 107 × sin  301.6 × 10-19 × 0.15

    = 0.49 × 10-3m  = 0.49 mm  0.5 mm 

The linear velocity is   = v cos θ
                              = 2.65 × 107 × cos 30°= 2.65 ×107×32= 2.3 × 107 ms-1 

Thus, the electron moves in a helical path of radius 0.49 mm with a velocity component of 2.3 x 107 ms–1 in the direction of magnetic field.