-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12037439

Deduce an expression for the electric potential due to an electric dipole at any point on its axis. Mention one contrasting feature of electric potential of a dipole at a point as compared to that due to single charge.

Solution

Consider, two charges q and -q seperated by distance 2a such that, it's total charge is 0.

 
Potential due to charge q = 14πεqr1
Potential due to charge -q = 14πεqr2 
Potential due to dipole, is the sum of potential due to charges q and -q.
Therefore,
                   V=14πεqr1-qr2 
 where, r1 and r2 are distances of charges q and -q from point P.

Now, 
r12 = r2+a2-2ar cosθr22 = r2+a2+2ar cosθ 

Considering r much greater than a, r>>a.

Therefore,
r12=r2 1-2acosθr +a2r2    r2 1-2acosθrly, r22=r2 1+2acosθrUsing Binomial theorem, and retaining upto the first order in a/r; we have, 1r1 1r 1-2acosθr-12 1r1+arcosθand1r2 1r 1+2acosθr-12 1r1-arcosθ

Putting these values in the above equation of potential we have,

V=q4πεo.2acosθr2Dipole moment is given by p=q.2aV=pcosθ4πεor2p cosθ=p.r 

where, r is the unit vector along the position vector OP.Electric potential of a dipole is given by,             V=14πεp.rr2         (r>>a)

For potential at any point on axis, θ=[0,π] 
V=±14πεo pr2 

Potential is positive when θ=0 and potential is negative when θ=π .

Electrical potential falls off at large distance, as 1r2 and not as 1r,  characteristic of the potential due to a single charge.



Some More Questions From Electrostatic Potential and Capacitance Chapter