-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12037304

Two tiny spheres carrying charges 1.5 μC and 2.5 μC are located 30 cm apart. Find the potential and electric field:
(a) at the mid-point of the line joining the two charges, and
(b) at a point 10 cm from this mid-point in a plane normal to the line and passing through the mid-point.

Solution
Given,
Charge on 1st sphere, q1= 1.5 μC
Charge on 2nd sphere, q2= 2.5 μC
Distance between the two charges, r= 30 cm


 
(a) Potential at the mid-point of the line joining the two charges is
                                       V = 14πε0q1r1+q2r2                   = 9 × 109 1.5 × 10-60.15+2.5 × 10-60.15V                   = 9 × 109 × 10-60.154                    = 240000
       V = 2.4 × 105V

Electric field at the mid point O due to charge at A

E = 14πε0q1r12   = 9 × 109 × 1.5 ×10-6(0.15)2   =  6 × 105 Vm-1 along OB

Electric field at the mid-point O due to charge at B
E = 14πε0q2r22    = 9 × 109 × 2.5 × 10-6(0.15)2   = 10 × 105 Vm-1 along OA 


Thus, the total electric field at the mid-point O is


E = 10 × 105 - 6 × 105    = 4 × 105Vm-1(along BA) 

(b) Potential at the point C due to the two charges is

V = 14πε0q1r1+q2r2where, r1 is the distance from A to C and,             r2 is the distance from B to Cr1=r2=(15)2+(10)2  =325  cm = 325 × 10-2 m   = 9×1091.5 × 10-6325×10-2+2.5 × 10-6325×10-2V   = 9×109×10-610-2. 4.0325V   = 9 × 418.02 × 105V    = 2 × 105 V

Electric field at C due to charge at A



Electric field at C due to charge at B

E2 = 14πε0q2r22 = 9 × 109×2.5 × 10-6325 × 10-4 = 6.92 × 105 Vm-1

If the angle between E1 and E2 be θ, then
Using law of trignometry,
tan θ=side opposite to angleperpendicular 

tanθ2 = 0.150.10 = 1.5
  θ/2 = 56.3 °   or,    θ = 112.6°

Thus, magnitude of resultant field at C is



Some More Questions From Electrostatic Potential and Capacitance Chapter