Sponsor Area

Electric Charges And Fields

Question
CBSEENPH12037236

Point charges having values + 0.1 μC, + 0.2 μC, – 0.3 μC and –0.2 μC are placed at the corners A, B, C and D respectively of a square of side one metre. Calculate the magnitude of the force on a charge of + 1 μC placed at the centre of the square.

Solution

       

Using the above fig.

    AC2 = AB2+BC2 = 1+ 1 = 2

       AC = 2 m
           AO = 122 m = 0.5 2 m
Also,   AO = CO = BO = DO = 0.52 m

Let Fa be the force exerted by the charge of ‘+ O.1μC’ on the charge ‘+ 1 μC’ placed at centre O of the square.
Then using Coulomb's law for Electrostatic force,

 FA = 9 × 109 Nm2C-2 (0.1 × 10-6C) (1 × 10-6C)2(0.5)2 m2
   FA = 9×109×0.1×10-122×0.25N      = 0.0018 N

If Fc is the force exerted by charge at C on charge at O, then
      FC = 9 × 109 0.3 × 10-6 1 × 10-62 (0.5)2N     = 9×0.3×10-32×0.25N      = 0.0054 N

Both FA and FC act in the same direction. The resultant of FA and FC,
         
 F1 = (0.0018+0.0054)N = 0.0072N

Force exerted by the charge at B on the charge at O,             

     FB = 9×1090.2 × 10-61 × 10-62(0.5)2N  

        =3.6 × 10-3N= 0.0036 N

Force exerted by the charge at D on the charge at O,
     FD = 9 × 1090.2 × 10-6 1×10-62(0.5)2N       = 0.0036 N

Both FB and FD act in the same direction.
Resultant of FB and FD'
   F2 = (0.0036+0.0036) N = 0.0072 N

The angle between F1 and F2 is clearly 90°.
So, the resultant F of F
1 and F2 is given by

F = (0.0072)2+(0.0072)2N   = 0.0072 2N   = 0.0072 × 1.414 N   = 0.01018 N