Sponsor Area

Electric Charges And Fields

Question
CBSEENPH12037234

Using Gauss's law, derive an expression for the electric field intensity at any point outside a uniformly charged thin spherical shell of radius R and charge density a C/m2. Draw the field lines when the charge density of the sphere is (i) positive, (ii) negative. (b) A uniformly charged conducting sphere of 2.5 m in diameter has a surface charge density of 100 μC/m2. Calculate the
(i) charge on the sphere
(ii) total electric flux passing through the sphere.

Solution
(a) Electric field intensity at any point outside a uniformly charged spherical shell:

Consider a thin spherical shell of radius R with centre O. Let charge +q is uniformly distributed over the surface of the shell.



Let P be any point on the sphere S1 with centre O and radius r. According to Gauss's Law


If σ is the surface charge density,

∴   q=σ. A = σ . 4πr2                                           

∴   Electric field lines when the charged density of the sphere:

(i) Positive            (ii)     Negative

(b)
Here given,
diameterof charged conducting sphere = 2.5 m              
   Radius -r = 2.52 = 1.25 m
Charge density is given by  σ = 100 μc/m2 = 100 × 10-6 = 10-4 C/m2

(i)charge on the sphere - q = 4π R2σ
                                 = 4 × 3.14 × (1.25)2 × 10-4 = 19.625 × 10-4= 1.96 × 10-3 C
(ii) Total electric flux
                     ϕE = q0
             ϕE = 1.96 × 10-38.85 × 10-12 = 0.221 × 109 = 2.21 × 108 Nm2 C-1

Sponsor Area