-->

Electric Charges And Fields

Question
CBSEENPH12037285

A rigid insulated wire frame in the form of a right-angled triangle ABC, is set in a vertical plane as shown in fig. Two beads of equal masses m each and carrying charges q1and q2 are connected by a cord of length l and can slide without friction on the wires.
Considering the case when the beads are stationary, determine
(i) the angle α
(ii) the tension in the cord and
(iii) the normal reaction on the beads.
If the cord is now cut, what are the values of the charges for which the beads continue to remain stationary?

Solution
The forces acting on the bead P are shown in the figure below.

charge on beads are qand q2
length of the cord = l
Assuming that the charges are similar, the repulsive force F is

F = kq1 q2l2
where, K is a constant.

Let T be the tension in the string and N
1be the normal reaction on the bead at P.
Considering the components of forces perpendicular and parallel to AB we have, for equilibrium,

                mg cos 60° = (T-F) cos α      ...(i)
                                                                               N1 = mg cos 30° + (T-F) sin α    ...(ii)

For the bead at θ, we have
               mg sin 60° = (T-F) sin α        ...(iii)
                                                                              N2 = mg cos 60° + (T-F) cos α    ...(iv)

Squaring and adding equation (i) and (iii) we get
                     m2g2 = (T-F)2                        
                  T-F = ± mg                     ...(v)

Assuming that the charges are similar, we have
                  T-F = +mg
                 T = F+mg = kq1q2l2+mg    ...(vi)

From equation (i) we have
                  mg cos 60° = mg cos α
                         α = 60°

Equation (ii) gives

             N1 = mgcos 30° + cos 30°      = mg cos 30° + mg sin 60°     = 2 mg cos 30°     = mg 3

From equation (iv) we have
         N2 = mg cos 60° + mg cos 60° = mg

If the string is cut, T = 0 and we get, from equation (v)
             
                 F = ± mgF = kq1 q2l2 = ±mg
           q1 q2 = ± mg l2k
Thus q1 and q2 may have same or opposite signs to remain stationary.