-->

Electric Charges And Fields

Question
CBSEENPH12037282

Two tiny spheres, each having mass m kg and charge q coulomb, are suspended from a point by insulating threads each 1 metre long but negligible mass. When the system is in equilibrium, each string makes an angle θ with the vertical. Prove that q2 = (4 mg l2 sin2 θ tan θ) 4πε0.

Solution

Consider the equilibrium of sphere A.
Following forces act on the sphere A.
(i) Force F of repulsion on A due to B.
(ii) Weight mg acting vertically downwards.
(iii) Tension T in the string towards the point of suspension O.

Resolving the tension T into two rectangular components:

T cos θ and T sin θ

For equilibrium of A,
                       T sin θ = F
                                = 14πε0q2AB2
and
                      T cos θ = mg

Dividing, 
                    tan θ = 14πε0q2AB2mg

But                  AB = 2AC
                          = 2l sin θ

     tan θ = 14πε0q2(2l sin θ)2 mg

        q2 = (4 mg l2 sin2 θ tanθ) 4πε0.