-->

Electric Charges And Fields

Question
CBSEENPH12037265

Define electric dipole moment. Derive an expression for the electric field intensity at any point along the equatorial line of a dipole.

Solution

Electric dipole moment is defined as the product of either charge and the length of the electric dipole.

Electric field on equitorial line of an electric dipole:

Consider an electric dipole consisting of charges -q and +q seperated by a distance 2a. Let P be a point on equitorial line of the dipole at a distance 'r' from the centre of the dipole as shown in fig.
 


Let, EA and EB be the Electric field at point P due to charge -q at point A and +q at point B. Then, resultant Electric field at point P is given by 


To find the resultant electric field intensity due to the dipole at point P, we will represent EA and EB by the two adjacent sides PL and PM of a parallelogram. Then, diagonal PN represents the resultant Electric field due to the dipole acting along Px'. The resultant electric field can also be found using the triangle law of addition of vectors.
In  PAB, PA, BP and BA represent  EA , EB  and E respectively. By triangle law of addition of vectors,EBA=EAPA =EBBPE =EA×BAPA         =14πε.q(r2+a2)× 2ar2+a2         =14πε.q(2a)(r2+a2)32Now, q(2a)=p is the magnitude of the electric dipole moment of the dipole. E=14πε·p(r2+a2)32The direction of electric field at a point on the equitorial line of the dipole is from  +q to -q (in a direction opposite to the direction of electric dipole moment of dipole) E=- 14πε. p(r2+a2)32