-->

Electrostatic Potential And Capacitance

Question
CBSEENPH12047948

An early model for an atom considered it to have a positively charged point nucleus of charge Ze, surrounded by a uniform density of negative charge upto a radius R. The atom as a whole is neutral. The electric field at a distance r from the nucleus is (r < R)

      

  • Ze4πε0 1r2 - rR3

  • Ze4πε0 1r3 - rR2

  • Ze4πε0 rR3 - 1r2

  • Ze4πε0 rR3 + 1r2

Solution

A.

Ze4πε0 1r2 - rR3

Charge on nucleus = + Ze

Total negative charge = - Ze

                     (  atom is electrically neutral)

Negative charge density

             ρ = chargevolume

                = - Ze43 πR3

⇒         ρ = -34 Zeπ R2                     ...(i)

Consider a Gaussian surface with radius r.

By Gauss's theorem

       E (r)  × 4π r2 = qε0                .....(ii)

Charge enclosed by Gaussian surface,

     q = Ze + 4π r33ρ

          = Ze - Ze r3R3               [ using (i) ]

From (ii),

    E (r ) = q4π ε0r2

            = Ze - Ze r2R34πε0 r2

⇒   E (r) = Ze4πε0 r2 1r2 - rR3

Some More Questions From Electrostatic Potential and Capacitance Chapter