-->

Kinetic Theory

Question
CBSEENPH11026329

A horizontal tube of length l closed at both ends, contains an ideal gas of molecular weight M. The tube is rotated at a constant angular velocity ω about a vertical axis passing through an end. Assuming the temperature to be uniform and constant. If p1 and p2 denote the pressure at free and the fixed end respectively, then choose the correct relation

  • p2p1 = e2 l22RT

  • p1p2 = eM ωl2RT

  • p1p2 = eω l M3RT

  • p2p1 = eM2 ω2 l23RT

Solution

A.

p2p1 = e2 l22RT

Consider the diagram

Consider the elementary part of thickness dx at a distance x from the axis of rotation, then force on this part

          Adp = (dm)ω2 x              ......(i)

where, dm = mass of element

           ω = angular velocity

Now, from ideal gas equation

           pV = nRT 

   R - Avagadro constant

   V = Volume

    n = Number of moles of gas

           pA dx = dmMRT

⇒         dm = MpART dx                 ......(ii)

From Eqs. (i) and (ii)

         Adp = M p AR Tω2 x dx

0(minimum) to l (maximum) is the limit

       p1p2dpp = 0lM ω2R T x dx

⇒      ln p = 2RTx220l

⇒     lnp2p1 = 2 l22RT 

⇒       p2p1 = eM ω2 l22RT