-->

System Of Particles And Rotational Motion

Question
CBSEENPH11026376

A ball of radius R rolls without slipping. Find the fraction of total energy associated with its rotational energy, if the radius of the gyration of the ball about an axis passing through its centre of mass is K.

  • K2K2 + R2

  • R2K2 + R2

  • K2 + R2R2

  • K2R2

Solution

A.

K2K2 + R2

 Kinetic energy of rotation is

  Krot122                  

          = 12 MK2 v2R2

 where, k is radius of gyration.

Kinetic energy of translation is Ktran12 Mv2

Thus, total energy, 

          E = Krot + Ktrans

              = 12 MK2 v2R2 +12 Mv2

              = 12 M v2 K2R2 + 1

              = 12 Mv2R2  K2+ R2 

       E= 12 Mv2R2  K2 +R2 

Hence 

     KrotTotal energy, E = 12 MK2 v2R212M v2R2 K2 + R2

      KrotTotal energy E=K2K2 + R2