-->

System Of Particles And Rotational Motion

Question
CBSEENPH11026341

Two blocks of masses m1 and m2 are connected by a spring of spring constant k. The block of mass m2 is given a sharp empulse so that it acquires a velocity vtowards right. Find the maximum elongation that the spring will suffer.

           

  • m1 m2m1 + m212 v0

  • m1 + m2m1 -  m2 v0

  • m1 + m2m1 - m212 v0 

  • 2m1 + m2m1 m212 v0

Solution

A.

m1 m2m1 + m212 v0

The centre of mass is the location of particles within a system where the total mass of the system can be considered concentrated. When the system of particles is moving, the center of mass moves along with it. 

The centre of mass of velocity equation is the sum of each particle's momentum ( mass times velocity ) divided by the total mass of the system.

The velocity of the centre of mass of two particles

     vcmm1 v1 + m2 v2m1 + m2

When v1 =0  and  v2 =v0, then

    vcm = m2 v0m1 + m2

Now, let 'x' be the elongation in the spring.

Change in potential energy = potential energy stored in spring

⇒   12 m2 v02 - 12 m1 + m2m2 v0m1 + m22 =   12 kx2

⇒    m2 v02  1 - m2m1 + m2 = kx2 

⇒  m2 v02 m1 + m2 - m2m1 + m2  = kx2

This gives

          x = m1 m2m1 + m212 v0