-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020771

A particle executes simple harmonic oscillation with an amplitude a. The period of oscillation is T. The minimum time taken by the particle to travel half of the amplitude from the equilibrium position is:

  • T/4

  • T/8

  • T/12

  • T/2

Solution

C.

T/12

Let displacement equation of particle executing SHM is
y = a sin ωt
As particle travels half of the amplitude from the equilibrium position, so
y= a/2
therefore,
straight a over 2 space equals space straight a space sin space ωt
or space sin space ωt space equals space 1 half space equals space sin space straight pi over 6
or space ωt space equals space straight pi over 6
space straight t equals space fraction numerator straight pi over denominator 6 straight omega end fraction
space straight t space equals fraction numerator straight pi over denominator 6 begin display style fraction numerator 2 straight pi over denominator straight T end fraction end style end fraction space space space space space space space space space space space space therefore open parentheses straight omega space equals fraction numerator 2 straight pi over denominator straight T end fraction space space close parentheses
straight t space equals space straight T over 12
Hence, the particle travels half of the amplitude from the equilibrium in T/12 sec.