-->

Units And Measurement

Question
CBSEENPH11020521

A disc and a sphere of the same radius but differnt masses roll off two inclined planes of the same altitude and length. which one of the two objects gets to the bottom of the plane first?

  • Sphere

  • Both reach at the same time

  • Depends on their masses

  • Disc

Solution

A.

Sphere

a) Acceleration of an object rolling down an inclined plane is given by,
straight a space equals space fraction numerator straight g space sin space straight theta over denominator 1 plus begin display style straight I over mr squared end style end fraction
where comma space straight theta space equals space angle space of space inclination space of
the space inclined space plane
m = mass of the object,
I = moment of Inertia about the axis through the centre of mass.
For space disc comma
straight I over mr squared space equals space fraction numerator bevelled 1 half space m r squared over denominator m r squared end fraction equals 1 half
For solid sphere,
straight I over mr squared equals fraction numerator bevelled 2 over 5 space m r squared over denominator m r squared end fraction space equals space 2 over 5
For hollow sphere,
straight I over mr squared equals fraction numerator bevelled 2 over 3 space m r squared over denominator m r squared end fraction equals 2 over 3
therefore space straight a subscript disc space equals space fraction numerator straight g space sin space straight theta over denominator 1 plus begin display style 1 half end style end fraction
space space space space space space space space space space space space space equals 2 over 3 space straight g space sinθ
space space space space space space space space space space space space space equals space 0.66 space straight g space sin space straight theta
straight a subscript solid space sphere end subscript space equals space fraction numerator straight g space sin space straight theta over denominator 1 plus begin display style 2 over 5 end style end fraction
space space space space space space space space space space space space space space space space space space space equals space 5 over 7 space straight g space sin space straight theta
straight a subscript hollow space sphere end subscript space equals space fraction numerator straight g space sin space straight theta over denominator 1 plus begin display style 2 over 3 end style end fraction
space space space space space space space space space space space space space space space space space space space space space equals space 3 over 5 space straight g space sin space straight theta
space space space space space space space space space space space space space space space space space space space space equals space 0.6 space straight g space sin space straight theta
Clearly comma space
straight a subscript solid space sphere end subscript space greater than space straight a subscript disk greater than straight a subscript hollow space sphere end subscript 
Therefore, the given sphere is a solid sphere.
asolid sphere = ahollow sphere > adisk