-->

Oscillations

Question
CBSEENPH11020488

A particle of mass m is attached to a spring (of spring constant k) and has a natural angular frequency ω0. An external force F(t) proportional to cosωt (ω≠ω0) is applied to the oscillator. The time displacement of the oscillator will be proportional to

  • fraction numerator straight m over denominator straight omega subscript 0 superscript 2 minus straight omega squared end fraction
  • fraction numerator 1 over denominator straight m left parenthesis straight omega subscript 0 superscript 2 minus straight omega squared right parenthesis end fraction
  • fraction numerator 1 over denominator straight m left parenthesis straight omega subscript 0 superscript 2 plus straight omega squared right parenthesis end fraction
  • fraction numerator straight m over denominator straight omega subscript 0 superscript 2 plus straight omega squared end fraction

Solution

B.

fraction numerator 1 over denominator straight m left parenthesis straight omega subscript 0 superscript 2 minus straight omega squared right parenthesis end fraction

Initial angular velocity of particle = ω0 and at any instant t, angular velocity = ω Therefore, for a displacement x, the resultant acceleration
straight f equals space left parenthesis straight omega subscript 0 superscript 2 space minus straight omega squared right parenthesis straight x space space space..... left parenthesis straight i right parenthesis
External space force
straight F space equals space straight m left parenthesis straight f equals space left parenthesis straight omega subscript 0 superscript 2 space minus straight omega squared right parenthesis space straight x....... left parenthesis ii right parenthesis
Since comma space straight F proportional to space cosωt space left parenthesis given right parenthesis
therefore space
From space eq. space left parenthesis ii right parenthesis space straight m space left parenthesis straight omega subscript 0 superscript 2 space minus straight omega squared right parenthesis space straight x space proportional to space cosωt space.... space left parenthesis iii right parenthesis
Now, equation of simple harmonic motion
x = A sin (ωt + φ) .......... (iv)
at t = 0 ; x = A
∴ A = A sin( 0 + φ )
⇒  φ =π/2
therefore space straight A space sin space open parentheses ωt space plus straight pi over 2 close parentheses space equals space straight A space cot space ωt ..........(v)
Hence, from equations (iii) and (v), we finally get
straight m left parenthesis straight omega subscript 0 superscript 2 minus straight omega squared right parenthesis space straight A space cos space ωt space proportional to space cos space ωt
straight A proportional to space fraction numerator 1 over denominator straight m left parenthesis straight omega subscript 0 superscript 2 minus straight omega squared right parenthesis end fraction